## Low-Rank Matrix Approximation with Stability

Dongsheng Li<sup>1</sup>, Chao Chen<sup>2</sup>, Qin (Christine) Lv<sup>3</sup>, Junchi Yan<sup>1</sup>, Li Shang<sup>3</sup>, Stephen M. Chu<sup>1</sup>

 $^1$ IBM Research - China,  $^2$ Tongji University,  $^3$ University of Colorado Boulder





### **Problem Formulation**

#### Low-Rank Matrix Approximation (LRMA)

$$U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}, \text{ s.t. } \hat{R} = UV^T$$

The optimization problem of LRMA can be described as follows:

$$\hat{R} = \arg\min_{X} Loss(R, X), \ s.t. \ rank(X) = r$$

Example: User-item ratings matrix used by recommender systems



#### Problem Formulation

**Generalization performance** is a problem of matrix approximation when data is sparse, incomplete, and noisy [Keshavan et al., 2010; Candès & Recht, 2012].

- models are biased to the limited training data (sparse, incomplete)
- small changes in the training data (noisy) may significantly change the models.

**Algorithmic stability** has been introduced to investigate the generalization error bounds of learning algorithms [Bousquet & Elisseeff, 2001; 2002]. A stable learning algorithm has the properties that

- slightly changing the training set does not result in significant change to the output
- the training error should have small variance
- the training errors are close to the test errors

# Stability w.r.t Matrix Approximation

### Definition (Stability w.r.t. Matrix Approximation)

For any  $R \in \mathbb{F}^{m \times n}$ , choose a subset of entries  $\Omega$  from R uniformly. For a given  $\epsilon > 0$ , we say that  $\mathcal{D}_{\Omega}(\hat{R})$  is  $\delta$ -stable if the following holds:

$$\Pr[|\mathcal{D}(\hat{R}) - \mathcal{D}_{\Omega}(\hat{R})| \leq \epsilon] \geq 1 - \delta.$$



Figure: Stability vs. generalization error of RSVD on the MovieLens (1M) dataset. Rank r=5,10,15,20 and  $\epsilon=0.0046$ . 500 runs.

## Theoretical Analysis

#### Theorem

Let  $\Omega$  ( $|\Omega| > 2$ ) be a set of observed entries in R. Let  $\omega \subset \Omega$  be a subset of observed entries, which satisfy that  $\forall (i,j) \in \omega$ ,  $|R_{i,j} - \hat{R}_{i,j}| \leq \mathcal{D}_{\Omega}(\hat{R})$ . Let  $\Omega' = \Omega - \omega$ , then for any  $\epsilon > 0$  and  $1 > \lambda_0, \lambda_1 > 0$  ( $\lambda_0 + \lambda_1 = 1$ ),  $\lambda_0 \mathcal{D}_{\Omega}(\hat{R}) + \lambda_1 \mathcal{D}_{\Omega'}(\hat{R})$  and  $\mathcal{D}_{\Omega}(\hat{R})$  are  $\delta_1$ -stable and  $\delta_2$ -stable, resp., then  $\delta_1 \leq \delta_2$ .

#### Remark

1. If we select a subset of entries  $\Omega'$  from  $\Omega$ that are harder to predict than average, then minimizing  $\lambda_0 \mathcal{D}_{\Omega}(\hat{R}) + \lambda_1 \mathcal{D}_{\Omega'}(\hat{R})$  will be more stable than minimizing  $\mathcal{D}_{\Omega}(\hat{R})$ .

## Theoretical Analysis

#### $\mathsf{Theorem}$

Let  $\Omega$  ( $|\Omega| > 2$ ) be a set of observed entries in R. Let  $\omega_2 \subset \omega_1 \subset \Omega$ , and  $\omega_1$  and  $\omega_2$  satisfy that  $\forall (i,j) \in \omega_1(\omega_2)$ ,  $|R_{i,j} - \hat{R}_{i,j}| \leq \mathcal{D}_{\Omega}(\hat{R})$ . Let  $\Omega_1 = \Omega - \omega_1$  and  $\Omega_2 = \Omega - \omega_2$ , then for any  $\epsilon > 0$  and  $1 > \lambda_0, \lambda_1 > 0$  ( $\lambda_0 + \lambda_1 = 1$ ),  $\lambda_0 \mathcal{D}_{\Omega}(\hat{R}) + \lambda_1 \mathcal{D}_{\Omega_1}(\hat{R})$  and  $\lambda_0 \mathcal{D}_{\Omega}(\hat{R}) + \lambda_1 \mathcal{D}_{\Omega_2}(\hat{R})$  are  $\delta_1$ -stable and  $\delta_2$ -stable, resp., then  $\delta_1 \leq \delta_2$ .

#### Remark

**2.** Removing more entries that are easy to predict will yield more stable matrix approximation.

## Theoretical Analysis

#### $\mathsf{Theorem}$

Let  $\Omega$  ( $|\Omega| > 2$ ) be a set of observed entries in R.  $\omega_1,...,\omega_K \subset \Omega$  (K > 1) satisfy that  $\forall (i,j) \in \omega_k$  ( $1 \le k \le K$ ),  $|R_{i,j} - \hat{R}_{i,j}| \le \mathcal{D}_{\Omega}(\hat{R})$ . Let  $\Omega_k = \Omega - \omega_k$  for all  $1 \le k \le K$ . Then, for any  $\epsilon > 0$  and  $1 > \lambda_0, \lambda_1, ..., \lambda_K > 0$  ( $\sum_{i=0}^K \lambda_i = 1$ ),  $\lambda_0 \mathcal{D}_{\Omega}(\hat{R}) + \sum_{k \in [1,K]} \lambda_k \mathcal{D}_{\Omega_k}(\hat{R})$  and  $(\lambda_0 + \lambda_K) \mathcal{D}_{\Omega}(\hat{R}) + \sum_{k \in [1,K-1]} \lambda_k \mathcal{D}_{\Omega_k}(\hat{R})$  are  $\delta_1$ -stable and  $\delta_2$ -stable, resp., then  $\delta_1 \le \delta_2$ .

#### Remark

**3.** Minimizing  $\mathcal{D}_{\Omega}$  together with the RMSEs of more than one hard predictable subsets of  $\Omega$  will help generate more stable matrix approximation solutions.

## New Optimization Problem

We propose the SMA (Stable MA) framework that is generally applicable to any LRMA methods.

E.g., a new extension of SVD:

$$\hat{R} = \arg\min_{X} \ \lambda_0 \mathcal{D}_{\Omega}(X) + \sum_{s=1}^{K} \lambda_s \mathcal{D}_{\Omega_s}(X) \ s.t. \ \ rank(X) = r \quad \ (1)$$

where  $\lambda_0, \lambda_1, ..., \lambda_K$  define the contributions of each component in the loss function. (Extensions to other LRMA methods can be similarly derived.)

## The SMA Learning Algorithm

**Require:** R is the targeted matrix,  $\Omega$  is the set of entries in R, and  $\hat{R}$  is an approximation of R by existing LRMA methods. p > 0.5 is the predefined probability for entry selection.  $\mu_1$  and  $\mu_2$  are the coefficients for L2regularization.

```
1: \Omega' = \emptyset;
 2: for each (i, j) \in \Omega do
 3: randomly generate \rho \in [0, 1];
 4: if (|R_{i,j} - \hat{R}_{i,j}| \le \mathcal{D}_{\Omega} \& \rho \le p) or (|R_{i,j} - \hat{R}_{i,j}| >
          \mathcal{D}_{\Omega} \& \rho < 1 - p) then
 5: \Omega' \leftarrow \Omega' \cup \{(i,j)\};
 6.
          end if
 7: end for
 8: randomly divide \Omega' into \omega_1, ..., \omega_K (\bigcup_{k=1}^K \omega_i = \Omega');
 9: for all k \in [1, K], \Omega_k = \Omega - \omega_k;
10: (\hat{U}, \hat{V}) := \arg\min_{U,V} \left[ \sum_{k=1}^{K} \lambda_k \mathcal{D}_{\Omega_k}(UV^T) \right]
      +\lambda_0 \mathcal{D}_{\Omega}(UV^T) + \mu_1 \parallel U \parallel^2 + \mu_2 \parallel V \parallel^2
11: return \hat{R} = \hat{U}\hat{V}^T
```

#### **Datasets**

- MovieLens 10M ( $\sim$ 70k users, 10k items, 10<sup>7</sup> ratings)
- Netflix ( $\sim$ 480k users, 18k items,  $10^8$  ratings)

**Performance comparison** with four single MA models and three ensemble MA models as follows:

- Regularized SVD [Paterek et al., KDD' 07].
- BPMF [Salakhutdinov et al., ICML' 08].
- APG [Toh et al., PJO' 2010].
- GSMF [Yuan et al., AAAI' 14].
- DFC [Mackey et al., NIPS' 11].
- LLORMA [Lee et al., ICML' 13].
- WEMAREC [Our prior work, SIGIR' 15].

#### **Generalization Performance**



Figure: Training and test errors vs. epochs of RSVD and SMA on the MovieLens 10M dataset.

### Sensitivity of Subset Number K



Figure: Effect of subset number K on MovieLens 10M dataset (left) and Netflix dataset (right). SMA and RSVD models are indicated by solid lines and other compared methods are indicated by dotted lines.

### Sensitivity of Rank r



Figure: Effect of rank r on MovieLens 10M dataset (left) and Netflix dataset (right). SMA and RSVD models are indicated by solid lines and other compared methods are indicated by dotted lines.

#### Sensitivity of Training Set Size



Figure: RMSEs of SMA and four single methods with varying training set size on MovieLens 10M dataset (rank r = 50).

Table: RMSE Comparison of SMA and Seven Other Methods

|         | MovieLens (10M)     | Netflix             |
|---------|---------------------|---------------------|
| RSVD    | $0.8256 \pm 0.0006$ | $0.8534 \pm 0.0001$ |
| BPMF    | $0.8197 \pm 0.0004$ | $0.8421 \pm 0.0002$ |
| APG     | $0.8101 \pm 0.0003$ | $0.8476 \pm 0.0003$ |
| GSMF    | $0.8012 \pm 0.0011$ | $0.8420\pm0.0006$   |
| DFC     | $0.8067 \pm 0.0002$ | $0.8453 \pm 0.0003$ |
| LLORMA  | $0.7855 \pm 0.0002$ | $0.8275 \pm 0.0004$ |
| WEMAREC | $0.7775 \pm 0.0007$ | $0.8143 \pm 0.0001$ |
| SMA     | $0.7682\pm0.0003$   | $0.8036 \pm 0.0004$ |

### Conclusion

SMA (Stable MA), a new low-rank matrix approximation framework, is proposed, which can

- achieve high stability, i.e., high generalization performance;
- achieve better accuracy than state-of-the-art MA-based CF methods;
- achieve good accuracy with very sparse datasets.

Source code available at:

https://github.com/ldscc/StableMA.git