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Problem Formulation

Low-Rank Matrix Approximation (LRMA)
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The optimization problem of LRMA can be described as follows:

A

R = argminy Loss(R, X), s.t. rank(X) =r

Example: User-item ratings matrix used by recommender systems
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Problem Formulation

Generalization performance is a problem of matrix
approximation when data is sparse, incomplete, and noisy
[Keshavan et al., 2010; Candes & Recht, 2012].

@ models are biased to the limited training data (sparse, incomplete)

@ small changes in the training data (noisy) may significantly change
the models.

Algorithmic stability has been introduced to investigate the
generalization error bounds of learning algorithms [Bousquet &
Elisseeff, 2001; 2002]. A stable learning algorithm has the
properties that

@ slightly changing the training set does not result in significant
change to the output

@ the training error should have small variance

@ the training errors are close to the test errors
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Stability w.r.t Matrix Approximation

Definition (Stability w.r.t. Matrix Approximation)

For any R € F™*" choose a subset of entries 2 from R uniformly.
For a given € > 0, we say that Dg(R) is d-stable if the following
holds:

Pr[|D(R) — Do(R)| < €] > 1 6.
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Figure: Stability vs. generalization error of RSVD on the Movielens
(1M) dataset. Rank r = 5,10, 15,20 and ¢ = 0.0046. 500 runs.
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Theoretical Analysis

Theorem

Let Q (|Q2] > 2) be a set of observed entries in R. Let w C Q be a
subset of observed entries, which satisfy that ¥(i, j) € w,

|Rij — fA?,-J\ < Dq(R). Let ' = Q —w, then for any ¢ > 0 and
1> X, A1 >0 (Ao + A1 = 1), }oDa(R) + MDg(R) and Do(R)
are 01-stable and d,-stable, resp., then 61 < d5.

1. If we select a subset of entries ' from Qthat are harder to
predict than average, then minimizing \oDq(R) + A1 Dq/(R) will
be more stable than minimizing Dq(R).
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Theoretical Analysis

Theorem

Let Q (12| > 2) be a set of observed entries in R. Let

wy Cwi C Q, and wy and wy satisfy that V(i,j) € wi(w2),

‘R,"j = i%,"j‘ < 'DQ(I/'\?) Let Q1 = Q —wy and Q, = Q — wy, then for
anye>0and1l> X, A1 >0 (No+ N =1),

MoDa(R) + M1Dq, (R) and AoDa(R) + \1Dq,(R) are §;-stable and
0o-stable, resp., then 61 < 65.

4

2. Removing more entries that are easy to predict will yield more
stable matrix approximation.

6/16



Theoretical Analysis

Theorem

Let Q (|Q2] > 2) be a set of observed entries in R. wi,...,wx C Q
(K > 1) satisfy that V(i, j) € wk (1 < k < K),

|Rij — ,’J|<DQ(R) Let Q) =Q —wy forall 1 < k < K. Then,
for any € > 0 and 1 > Ao, A1, .., Ak >0 (K N =1),

AoDQ(i‘\?) + Zke[l,K] )\kDQk(fA?) and

(Ao 4+ Ak)Da(R) + D kel K—1] ADa, (R) are 6;-stable and
Op-stable, resp., then 61 < 9.

3. Minimizing Dq together with the RMSEs of more than one
hard predictable subsets of 2 will help generate more stable matrix
approximation solutions.
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New Optimization Problem

We propose the SMA (Stable MA) framework that is generally
applicable to any LRMA methods.

E.g., a new extension of SVD:

K
R =arg m)}n XoDa(X) + Z AsDq (X) s.t. rank(X)=r (1)

s=1

where Ag, A1, ..., Ak define the contributions of each component in
the loss function. (Extensions to other LRMA methods can be
similarly derived.)
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The SMA Learning Algorithm

Require: R is the targeted matrix, {2 is the set of entries in
R, and R is an approximation of R by existing LRMA
methods. p > 0.5 is the predefined probability for en-
try selection. p; and po are the coefficients for L2-
regularization.
Q =0
for each (i, j) € Q do

randomly generate p € [0, 1]; X

if (Ri; — Rij| <Do&p<por(|R;—Ri;|l>

Do & p <1 —p) then

Q' U{())):

end if
end for
randomly divide € into wy, ..., wr (UE_jw; = Q');
forall k € [1, K], Q = Q — wy;
10: (U, V):=argming y [S 0 ADo, (UVT)

FADo(UVT) + i | U [P +pz || V7]

11: return R = UVT

N

YW
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Datasets
e MovieLens 10M (~70k users, 10k items, 107 ratings)
o Netflix (~480k users, 18k items, 108 ratings)

Performance comparison with four single MA models and three
ensemble MA models as follows:

o Regularized SVD [Paterek et al., KDD' 07].
e BPMF [Salakhutdinov et al., ICML’ 08].

e APG [Toh et al., PJO’ 2010].

GSMF [Yuan et al., AAAI" 14].

DFC [Mackey et al., NIPS’ 11].

LLORMA [Lee et al., ICML’ 13].
WEMAREC [Our prior work, SIGIR" 15].
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Generalization Performance

MovieLens 10M
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Figure: Training and test errors vs. epochs of RSVD and SMA on the
MovielLens 10M dataset.
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Sensitivity of Subset Number K
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Figure: Effect of subset number K on MovieLens 10M dataset (left) and
Netflix dataset (right). SMA and RSVD models are indicated by solid
lines and other compared methods are indicated by dotted lines.
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Sensitivity of Rank r
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Figure: Effect of rank r on MovieLens 10M dataset (left) and Netflix
dataset (right). SMA and RSVD models are indicated by solid lines and
other compared methods are indicated by dotted lines.
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Sensitivity of Training Set Size

MovieLens 10M
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Figure: RMSEs of SMA and four single methods with varying training set
size on MovieLens 10M dataset (rank r = 50).
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Table: RMSE Comparison of SMA and Seven Other Methods

MovieLens (10M)

Netflix

RSVD

0.8256 + 0.0006

0.8534 + 0.0001

BPMF

0.8197 + 0.0004

0.8421 + 0.0002

APG

0.8101 £ 0.0003

0.8476 £+ 0.0003

GSMF

0.8012 £+ 0.0011

0.8420 4 0.0006

DFC

0.8067 £ 0.0002

0.8453 £+ 0.0003

LLORMA

0.7855 £+ 0.0002

0.8275 + 0.0004

WEMAREC

0.7775 £+ 0.0007

0.8143 + 0.0001

SMA

0.7682 + 0.0003

0.8036 + 0.0004
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Conclusion

SMA (Stable MA), a new low-rank matrix approximation
framework, is proposed, which can

@ achieve high stability, i.e., high generalization performance;

@ achieve better accuracy than state-of-the-art MA-based CF
methods;

@ achieve good accuracy with very sparse datasets.

Source code available at:
https://github.com/ldscc/StableMA.git
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