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Problem Formulation

Low-Rank Matrix Approximation (LRMA)

U ∈ Rm×r ,V ∈ Rn×r , s.t. R̂ = UV T

The optimization problem of LRMA can be described as follows:

R̂ = arg minX Loss(R,X ), s.t. rank(X ) = r

Example: User-item ratings matrix used by recommender systems
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Problem Formulation

Generalization performance is a problem of matrix
approximation when data is sparse, incomplete, and noisy
[Keshavan et al., 2010; Candès & Recht, 2012].

models are biased to the limited training data (sparse, incomplete)

small changes in the training data (noisy) may significantly change
the models.

Algorithmic stability has been introduced to investigate the
generalization error bounds of learning algorithms [Bousquet &
Elisseeff, 2001; 2002]. A stable learning algorithm has the
properties that

slightly changing the training set does not result in significant
change to the output

the training error should have small variance

the training errors are close to the test errors
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Stability w.r.t Matrix Approximation

Definition (Stability w.r.t. Matrix Approximation)

For any R ∈ Fm×n, choose a subset of entries Ω from R uniformly.
For a given ε > 0, we say that DΩ(R̂) is δ-stable if the following
holds:

Pr[|D(R̂)−DΩ(R̂)| ≤ ε] ≥ 1− δ.
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Figure: Stability vs. generalization error of RSVD on the MovieLens
(1M) dataset. Rank r = 5, 10, 15, 20 and ε = 0.0046. 500 runs.
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Theoretical Analysis

Theorem

Let Ω (|Ω| > 2) be a set of observed entries in R. Let ω ⊂ Ω be a
subset of observed entries, which satisfy that ∀(i , j) ∈ ω,
|Ri ,j − R̂i ,j | ≤ DΩ(R̂). Let Ω′ = Ω− ω, then for any ε > 0 and

1 > λ0, λ1 > 0 (λ0 + λ1 = 1), λ0DΩ(R̂) + λ1DΩ′(R̂) and DΩ(R̂)
are δ1-stable and δ2-stable, resp., then δ1 ≤ δ2.

Remark

1. If we select a subset of entries Ω′ from Ωthat are harder to
predict than average, then minimizing λ0DΩ(R̂) + λ1DΩ′(R̂) will
be more stable than minimizing DΩ(R̂).
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Theoretical Analysis

Theorem

Let Ω (|Ω| > 2) be a set of observed entries in R. Let
ω2 ⊂ ω1 ⊂ Ω, and ω1 and ω2 satisfy that ∀(i , j) ∈ ω1(ω2),
|Ri ,j − R̂i ,j | ≤ DΩ(R̂). Let Ω1 = Ω− ω1 and Ω2 = Ω− ω2, then for
any ε > 0 and 1 > λ0, λ1 > 0 (λ0 + λ1 = 1),
λ0DΩ(R̂) + λ1DΩ1(R̂) and λ0DΩ(R̂) + λ1DΩ2(R̂) are δ1-stable and
δ2-stable, resp., then δ1 ≤ δ2.

Remark

2. Removing more entries that are easy to predict will yield more
stable matrix approximation.
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Theoretical Analysis

Theorem

Let Ω (|Ω| > 2) be a set of observed entries in R. ω1, ..., ωK ⊂ Ω
(K > 1) satisfy that ∀(i , j) ∈ ωk (1 ≤ k ≤ K),
|Ri ,j − R̂i ,j | ≤ DΩ(R̂). Let Ωk = Ω− ωk for all 1 ≤ k ≤ K. Then,

for any ε > 0 and 1 > λ0, λ1, ..., λK > 0 (
∑K

i=0 λi = 1),
λ0DΩ(R̂) +

∑
k∈[1,K ] λkDΩk

(R̂) and

(λ0 + λK )DΩ(R̂) +
∑

k∈[1,K−1] λkDΩk
(R̂) are δ1-stable and

δ2-stable, resp., then δ1 ≤ δ2.

Remark

3. Minimizing DΩ together with the RMSEs of more than one
hard predictable subsets of Ω will help generate more stable matrix
approximation solutions.
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New Optimization Problem

We propose the SMA (Stable MA) framework that is generally
applicable to any LRMA methods.

E.g., a new extension of SVD:

R̂ = arg min
X

λ0DΩ(X ) +
K∑

s=1

λsDΩs (X ) s.t. rank(X ) = r (1)

where λ0, λ1, ..., λK define the contributions of each component in
the loss function. (Extensions to other LRMA methods can be
similarly derived.)
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The SMA Learning Algorithm
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Low-Rank Matrix Approximation with Stability

Algorithm 1 The SMA Learning Algorithm
Require: R is the targeted matrix, ⌦ is the set of entries in

R, and R̂ is an approximation of R by existing LRMA
methods. p > 0.5 is the predefined probability for en-
try selection. µ1 and µ2 are the coefficients for L2-
regularization.

1: ⌦0 = ;;
2: for each (i, j) 2 ⌦ do
3: randomly generate ⇢ 2 [0, 1];
4: if (|Ri,j � R̂i,j |  D⌦ & ⇢  p) or (|Ri,j � R̂i,j | >

D⌦ & ⇢  1� p) then
5: ⌦0  ⌦0 [ {(i, j)};
6: end if
7: end for
8: randomly divide ⌦0 into !1, ...,!K ([K

k=1!i = ⌦0);
9: for all k 2 [1, K], ⌦k = ⌦� !k;

10: (Û , V̂ ) : = arg minU,V [
PK

k=1 �kD⌦k
(UV T )

+�0D⌦(UV T ) + µ1 k U k2 +µ2 k V k2]
11: return R̂ = Û V̂ T

SMA with different parameters, e.g., rank r and the num-
ber of non-overlapping subsets K. Next, SMA is com-
pared against seven state-of-then-art matrix approximation
based recommendation algorithms, including four single
MA methods and three ensemble methods. At last, we an-
alyze SMA’s accuracy in different data sparsity settings.

4.1. Experiment Setup

Two widely used datasets are adopted to evaluate SMA:
MovieLens 10M (⇠70k users, 10k items, 107 ratings) and
Netflix (⇠480k users, 18k items, 108 ratings). For each
dataset, we randomly split it into training and test sets and
keep the ratio of training set to test set as 9:1. All exper-
imental results are presented by averaging the results over
five different random train-test splits.

In this study, we use learning rate v = 0.001 for stochastic
gradient decent method, µ1 = 0.06 for L2-regularization
coefficient, ✏ = 0.0001 for gradient descent convergence
threshold, and T = 250 for maximum number of itera-
tions. Optimal parameters of the compared methods are
chosen from their original papers. The source codes of
all the experiments are publicly available from: https:
//github.com/ldscc/StableMA.git.

We compare the performance of SMA with four single MA
models and three ensemble MA models as follows:

• Regularized SVD [Paterek et al., KDD’ 07]: is one
of the most widely used matrix factorization methods, in
which user/item features are estimated by minimizing the
sum-squared error using L2 regularization.
• BPMF [Salakhutdinov et al., ICML’ 08]: is a Bayesian

extension of PMF with model parameters and hyperparam-
eters estimated using Markov chain Monte Carlo method.
• APG [Toh et al., PJO’ 2010]: computes the approxi-
mation by solving a nuclear norm regularized linear least
squares problem.
• GSMF [Yuan et al., AAAI’ 14]: can transfer informa-
tion among multiple types of user behaviors by modeling
the shared and private latent factors with group sparsity reg-
ularization.
• DFC [Mackey et al., NIPS’ 11]: is an ensemble method,
which divides a large-scale matrix factorization task into
smaller subproblems, solves each other in parallel, and fi-
nally combines the subproblem solutions.
• LLORMA [Lee et al., ICML’ 13]: is an ensemble
method, which assumes that the original matrix is de-
scribed by multiple low-rank submatrices constructed by
non-parametric kernel smoothing techniques.
• WEMAREC [Chen et al., SIGIR’ 15]: is an ensemble
method, which constructs biased model by weighting strat-
egy to address the insufficient data issue in each submatrix.

4.2. Generalization Performance

Figure 2 compares training/test errors of SMA and RSVD
with different epochs on MovieLens 10M dataset (rank
r = 20 and subset number K = 3). As we can see, the dif-
ferences between training and test error of SMA are much
smaller than RSVD. Moreover, the training error and test
error are very close when epoch is less than 100. This re-
sult demonstrates that SMA can indeed find models that
have good generalization performance and yield small gen-
eralization error during the training process.

4.3. Sensitivity Analysis

Figure 3 investigates how SMA performs by varying num-
ber of non-overlapping subsets K (rank r = 200) and the
optimal RMSEs of all compared methods on both Movie-
lens 10M (left) and Netfilx (right) datasets. As we can see,
SMA outperforms all these state-of-the-art methods with
K varying from 1 to 5. It should be noted that, when K =
0, SMA is degraded to RSVD. Thus, the fact that SMA
can produce better recommendations than RSVD confirms
Theorem 1: with additional terms

PK
s=1 �sD⌦s

(R̂), we
can improve the stability of MA models. In addition, we
can see the RMSEs on both two datasets decrease as K in-
creases. This further confirms Theorem 4: probing easily
predictable entries to form harder predictable entry sets can
better increase the model performance.

Figure 4 analyzes the effect of rank r on MovieLens 10M
(left) and Netflix (right) datasets by fixing K = 3. It can
be seen that for any rank r from 50 to 250, SMA always
outperform the other seven compared methods in recom-
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Experiments

Datasets

MovieLens 10M (∼70k users, 10k items, 107 ratings)

Netflix (∼480k users, 18k items, 108 ratings)

Performance comparison with four single MA models and three
ensemble MA models as follows:

Regularized SVD [Paterek et al., KDD’ 07].

BPMF [Salakhutdinov et al., ICML’ 08].

APG [Toh et al., PJO’ 2010].

GSMF [Yuan et al., AAAI’ 14].

DFC [Mackey et al., NIPS’ 11].

LLORMA [Lee et al., ICML’ 13].

WEMAREC [Our prior work, SIGIR’ 15].
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Experiments

Generalization Performance
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Figure: Training and test errors vs. epochs of RSVD and SMA on the
MovieLens 10M dataset.

11 / 16



Experiments

Sensitivity of Subset Number K
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Figure: Effect of subset number K on MovieLens 10M dataset (left) and
Netflix dataset (right). SMA and RSVD models are indicated by solid
lines and other compared methods are indicated by dotted lines.
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Experiments

Sensitivity of Rank r
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Figure: Effect of rank r on MovieLens 10M dataset (left) and Netflix
dataset (right). SMA and RSVD models are indicated by solid lines and
other compared methods are indicated by dotted lines.
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Experiments

Sensitivity of Training Set Size
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Figure: RMSEs of SMA and four single methods with varying training set
size on MovieLens 10M dataset (rank r = 50).
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Experiments

Table: RMSE Comparison of SMA and Seven Other Methods

MovieLens (10M) Netflix

RSVD 0.8256 ± 0.0006 0.8534 ± 0.0001

BPMF 0.8197 ± 0.0004 0.8421 ± 0.0002

APG 0.8101 ± 0.0003 0.8476 ± 0.0003

GSMF 0.8012 ± 0.0011 0.8420 ± 0.0006

DFC 0.8067 ± 0.0002 0.8453 ± 0.0003

LLORMA 0.7855 ± 0.0002 0.8275 ± 0.0004

WEMAREC 0.7775 ± 0.0007 0.8143 ± 0.0001

SMA 0.7682 ± 0.0003 0.8036 ± 0.0004
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Conclusion

SMA (Stable MA), a new low-rank matrix approximation
framework, is proposed, which can

achieve high stability, i.e., high generalization performance;

achieve better accuracy than state-of-the-art MA-based CF
methods;

achieve good accuracy with very sparse datasets.

Source code available at:
https://github.com/ldscc/StableMA.git

16 / 16

https://github.com/ldscc/StableMA.git

