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Abstract
Matrix approximation (MA) is one of the most
popular techniques for collaborative filtering (CF).
Most existing MA methods train user/item la-
tent factors based on a user-item rating matrix
and then use the global latent factors to model
all users/items. However, globally optimized la-
tent factors may not reflect the unique interests
shared among only subsets of users/items, without
which unique interests of users may not be accu-
rately modelled. As a result, existing MA meth-
ods, which cannot capture the uniqueness of differ-
ent user/item, cannot provide optimal recommen-
dation.
In this paper, a mixture probabilistic matrix ap-
proximation (MPMA) method is proposed, which
unifies globally optimized user/item feature vec-
tors (on the entire rating matrix) and locally op-
timized user/item feature vectors (on subsets of
user/item ratings) to improve recommendation ac-
curacy. More specifically, in MPMA, a method is
developed to find both globally and locally op-
timized user/item feature vectors. Then, a Gaus-
sian mixture model is adopted to combine global
predictions and local predictions to produce ac-
curate rating predictions. Experimental study us-
ing MovieLens and Netflix datasets demonstrates
that MPMA outperforms five state-of-the-art MA
based CF methods in recommendation accuracy
with good scalability.

1 Introduction
Collaborative filtering (CF) methods have achieved great suc-
cess in today’s recommender systems, among which ma-
trix approximation (MA) is one of the most popular tech-
niques. In MA-based CF methods, both users and items are
characterized by vectors of latent factors inferred from the
user-item rating matrix, and these latent factors are used to
make rating predictions [Adomavicius and Tuzhilin, 2005;

⇤Chao Chen and Dongsheng Li contributed equally to this work.

Su and Khoshgoftaar, 2009]. Most existing MA-based meth-
ods [Srebro et al., 2004; Salakhutdinov and Mnih, 2007;
Koren, 2008] rely on globally optimized user/item latent fac-
tors to produce recommendations. However, in many real-
world applications, if we take the globally optimized latent
factors as “common interests”, then subsets of users may
share “unique interests” that are not covered by the “com-
mon interests” [Xu et al., 2012]. Therefore, if MA methods
only consider the “common interests” without considering
“unique interests”, the recommendations may not be optimal
for the “unique” subset of each user. As pointed out by Ko-
ren et al. [2008], MA models can effectively estimate overall
structures that relate simultaneously to most or all items, but
they perform poorly at detecting strong associations among a
small set of items.

Recently, matrix clustering [Xu et al., 2012; Lee et
al., 2013] and community detection [Zhang et al., 2013]
methods have been proposed to discover the localized re-
lationships among subsets of users/items. In these meth-
ods, local user/item latent factors are trained within clus-
ters/communities, and then recommendations are produced
by local models. However, these methods often rely on only
local models and fail to incorporate the global latent factors in
recommendation, which may compromise recommendation
quality due to insufficient data in local clusters or communi-
ties [Chen et al., 2015]. In summary, MA-based CF methods
only relying on either global latent factors or local latent fac-
tors alone compromise recommendation accuracy. Therefore,
there is need to design new MA-based CF methods which can
incorporate both global latent factors and local latent factors.

In this paper, we developed a new method to model each
user/item using local and global latent factors to capture both
localized relationships in user-item subgroups and common
associations among all users and items. Following multi-
task feature learning techniques [Evgeniou and Pontil, 2007;
Ando and Zhang, 2005], we share global user/item latent fac-
tors across user-item subgroups, so that the local latent fac-
tors can be trained without suffering from insufficient data
issue. In a Bayesian perspective, the proposed mixture prob-
abilistic matrix approximation (MPMA) method assumes ev-
ery user-item rating can be depicted by a Gaussian mixture
model containing three components: (1) a global model that
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Figure 1: Comparison of three kinds of matrix approxima-
tion models for collaborative filtering. (a) standard low-rank
model, (b) clustering-based model, and (c) the proposed
MPMA model.

captures the global latent factors of all users and items, (2) a
user-based local model that captures the local latent factors of
the corresponding subset of users, and (3) an item-based local
model that captures the local latent factors of the correspond-
ing subset of items. In MPMA, a new optimization problem
is first defined and solved to obtain the global/local latent fac-
tors for each user/item. A pipeline-based learning method is
proposed to train the user/item latent factors in parallel. Fi-
nally, recommendation scores are generated by combining the
scores from different components of the mixture model. The
proposed MPMA method is evaluated using two real-world
datasets (MovieLens and Netflix), and the experimental re-
sults demonstrate that MPMA achieves better recommenda-
tion accuracy than five state-of-the-art MA-based CF methods
while achieving good efficiency.

2 Related Work
Recommender systems have become increasingly popular in
recent years, aiming to provide personalized recommenda-
tions for products that suit users’ tastes [Adomavicius and
Tuzhilin, 2005]. Among existing recommender solutions, col-
laborative filtering (CF) is widely used for simplicity of im-
plementation and high quality of recommendation. Early CF
algorithms focus on memory-based approaches, such as user-
based [Herlocker et al., 1999] and item-based [Sarwar et al.,
2001] methods, which make rating predictions based on sim-
ilarities between users/items. However, these approaches suf-
fer from the data sparsity problem, because the user/item sim-
ilarities cannot be calculated accurately without sufficient rat-
ings.

Recently, matrix approximation-based CF methods have
been proposed to alleviate the data sparsity issue. Billsus et
al. [1998] first introduced SVD to the domain of collabora-
tive filtering. Later on, a maximum-margin matrix factoriza-
tion (MMMF) method was proposed by Srebro et al. [2004].
Salakhutdinov et al. [2007] first proposed a probabilistic ma-
trix factorization (PMF) method, and later constructed BPMF
— a Bayesian extension of PMF method [Salakhutdinov
and Mnih, 2008]. Koren et al. [2008] pointed out that these
models are generally effective at estimating overall struc-
ture that relates simultaneously to most or all items, but per-
form poorly at detecting strong associations among a small
set of closely related items. To address this issue, recent

work adopted matrix clustering techniques [Xu et al., 2012]
and community detection methods [Zhang et al., 2013] to
find user/item clusters with strong correlations to improve
recommendation accuracy. Mackey et al. [2011] and Lee et
al. [2013] followed divide-and-conquer methodology, which
divides the MA task into smaller subproblems, solves these
subproblems in parallel, and then combines the recommen-
dations of sub-models to achieve better accuracy. However,
these methods mainly focus on ratings inside clusters and ig-
nore the majority of user ratings outside clusters. Since train-
ing data are often insufficient in the detected clusters, the per-
formance of local models may degrade due to severe overfit-
ting [Chen et al., 2015]. Figure 1 summarizes these two types
of MA models in (a) and (b), respectively.

The objective of this work is to unify localized rela-
tionships in user-item subgroups and common associations
among all users and items to improve the recommenda-
tion accuracy. The most related existing works are Collec-
tive Matrix Factorization (CMF) [Singh and Gordon, 2008]
and Group-Sparse Matrix Factorization (GSMF) [Yuan et
al., 2014]. CMF shares parameters among factors when de-
composing multiple matrices represented for multiple rela-
tions to learn different type of user behaviors. And GSMF
uses group sparsity regularization to automatically transfer
information among multiple types of behaviors. Different
from previous works, the proposed work only utilizes rating
matrix without requiring additional information and directly
models each user/item by global (common) and local (pri-
vate) features, and then shares global features across multi-
ple tasks. We illustrate this idea in Figure 1 (c), where we
can see, items for users in R1 are modeled by both global
features Ṽ and local features V (1), and the global user fea-
tures Ũ (1) and Ũ (2) are shared across multiple tasks. No-
tably, the proposed MPMA method can learn multiple re-
lated tasks simultaneously, since multi-task feature learn-
ing has been empirically and theoretically proved to often
significantly improve model performance relative to learn-
ing each task independently [Evgeniou and Pontil, 2007;
Ando and Zhang, 2005]. For better understanding, we intro-
duce the proposed MPMA method in a Bayesian perspective.

3 Mixture Probabilistic Matrix
Approximation

This section first formulates the MPMA problem. The method
for learning user/item feature vectors in the mixture model
of MPMA is then described. Finally, the rating prediction
method based on the mixture model is presented in detail.

3.1 Problem Formulation
Let’s first introduce the notations used in this paper. Upper
case letters, such as R, U , and V , denote matrices. For matrix
R 2 Rm⇥n, we denote Ri· as the i-th row vector, R·j as the
j-th column vector, and Rij as the entry in the i-th row and
j-th column. In addition, the Frobenius norm is adopted in
this paper, which is defined as ||R||2 :=

Pm
i=1

Pn
j=1 R

2
ij .

MPMA assumes that each user/item is modeled by two
levels of latent factors: (1) global latent factors shared
across all users/items, and (2) local latent factors shared
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Figure 2: A high-level illustration of the MPMA method. Ev-
ery rating Rij is described by a mixture model with a set
of latent variables Z, which consists of (1) user-based local
model, (2) global model, and (3) item-based local model.

within subsets of users/items. Furthermore, as shown in Fig-
ure 2, we introduce a new mixture feature vector model.
In this model, each user i (item j) is characterized by a
global feature vector Ũi·(Ṽ·j) and a local feature vector
U (t)
i· (V (s)

·j ). Meanwhile, each rating Rij is also described
by the mixture model with latent variables Z, which con-
sists of local user model N (Rij |Ũi·V

(s)
·j ,�2

1I) (left), local
item model N (Rij |U (t)

i· Ṽ·j ,�2
3I) (right), and global model

N (Rij |Ũi·Ṽ·j ,�2
2I) (middle).

To discover user-item subgroups sharing similar unique
interests, many existing clustering techniques or commu-
nity detection methods can be adopted, such as K-means++
method [Arthur and Vassilvitskii, 2007], and Bregman Co-
clustering method [Banerjee et al., 2007], etc. Without los-
ing any generality, we assume that users are divided into g
groups, and the rating matrix of the t-th user group is de-
noted as R(t)

U (t 2 [1, g]). Similarly, items are divided into f
groups, and the rating matrix of the s-th item group is de-
noted as R(s)

V (s 2 [1, f ]). For each user-item pair (i, j), we
assume user i is in the t-th user group and item j is in the s-
th item group. Then, the conditional distributions of the three
corresponding components (as illustrated in Figure 2) can be
defined by three Gaussian models, as follows:

p(Rij |Ũi·, V
(s)
·j ,�2

1) = N (Rij |Ũi·V
(s)
·j ,�2

1) (1)

p(Rij |Ũi·, Ṽ·j ,�
2
2) = N (Rij |Ũi·Ṽ·j ,�

2
2) (2)

p(Rij |U (t)
i· , Ṽ·j ,�

2
3) = N (Rij |U (t)

i· Ṽ·j ,�
2
3) (3)

where Ũi· (Ṽ·j) is the global feature vector of the i-th user
(j-th item), and similarly, U (t)

i· (V (s)
·j ) is the local feature vec-

tor of the i-th user (j-th item) for the t-th user group (s-th
item group). Following the idea of probabilistic matrix factor-
ization (PMF) [Salakhutdinov and Mnih, 2007], zero-mean
spherical Gaussian priors are placed on all user and item fea-
ture vectors. Thus, each global/local feature matrix can be

modeled as follows:

p(Ũ |�2
ŨI) =

m
Y

i=1

N (Ũi·|0,�2
ŨI) (4)

p(Ṽ |�2
Ṽ I) =

n
Y

j=1

N (Ṽ·j |0,�2
Ṽ I) (5)

p(U (t)|�2
U(t)I) =

m
Y

i=1

N (U (t)
i· |0,�2

U(t)I) (6)

p(V (s)|�2
V (s)I) =

n
Y

j=1

N (V (s)
·j |0,�2

V (s)I) (7)

where �2
· denotes the co-variance matrix of each random

variable and I denotes the identity matrix. Then, the log of
the posterior distribution over the user and item features is
given by

ln p(Ũ , Ṽ , U (1), . . . , U (g), V (1), . . . , V (f)|R)

=
f

X

s=1

g
X

t=1

X

⇢(i)=s

X

⇢(j)=t

ln
n

Iij
⇣

⇡1p(Rij , Ũ , V (s))

+ ⇡2p(Rij , Ũ , Ṽ ) + ⇡3p(Rij , U
(t), Ṽ )

⌘o

+ C,

(8)

where C is a constant that does not depend on the param-
eters. Unfortunately, it is very difficult to directly maximize
the log-posterior in Equation (8). Therefore, we try to find
an approximate solution via maximizing the lower bound of
Equation (8). Based on Jensen’s inequality, the lower bound
of Equation (8) can be obtained as follows:

ln p(Ũ , Ṽ , U (1), . . . , U (g), V (1), . . . , V (f)|R)

�C1 +
f

X

s=1

g
X

t=1

X

⇢(i)=s

X

⇢(j)=t

Iij
n

⇡2 ln p(Rij , Ũ , Ṽ )

+ ⇡1 ln p(Rij , Ũ , V (s)) + ⇡3 ln p(Rij , U
(t), Ṽ )

o

(9)

where Iij is an indicator function. Iij = 1 if user i rates item
j in the training data, and Iij = 0 otherwise. Then, applying
Equations (1) to (7) in Equation (9), the optimization objec-
tive becomes:

L0 = C2 �
m
X

i=1

n
X

j=1

⇡2

2�2
2

Iij(Rij � Ũi·Ṽ·j)
2

�
f

X

s=1

g
X

t=1

X

⇢(i)=s

X

⇢(j)=t

⇡1

2�2
1

Iij(Rij � Ũi·V
(s)
·j )2

�
f

X

s=1

g
X

t=1

X

⇢(i)=s

X

⇢(j)=t

⇡3

2�2
2

Iij(Rij � U (t)
i· Ṽ·j)

2

�
g

X

s=1

m
X

i=1

⇡3

2�2
U(t)

U (t)
i· [U (t)

i· ]0 � ⇡1 + ⇡2

2�2
Ũ

m
X

i=1

Ũi·Ũ
0
i·

�
f

X

t=1

n
X

j=1

⇡1

2�2
V (s)

[V (s)
·j ]0V (s)

·j � ⇡2 + ⇡3

�2
Ṽ

n
X

j=1

Ṽ 0
·j Ṽ·j

(10)

To maximize the objective function defined in (10), it is
equivalent to minimize the sum of squared error loss function
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with quadratic regularization terms as follows:

min
Ũ,Ṽ ,U(1),...,U(g),V (1),...,V (f)

L(Ũ , Ṽ , U (1), . . . , V (f))

=k I ⌦ (R� Ũ Ṽ ) k2 +�1 k Ũ k2 +�2 k Ṽ k2 (11)

+
X

s2[f ]
↵s k I(s)U ⌦ (R(s)

U � Ũ (s)V (s)) k2 (12)

+
X

t2[g]
�t k I(t)V ⌦ (R(t)

V � U (t)Ṽ (t)) k2 (13)

+
X

s2[f ]
�3 k V (s) k2 +

X

t2[g]
�4 k U (t) k2 (14)

where ↵s = (⇡1�2)/(⇡2�2
(s)) and �t = (⇡3�2)/(⇡2�2

(t))
are the weights for local models by giving the weight of
global model to 1. Moreover, �1 = [(⇡1 + ⇡2)�2

2 ]/(⇡2�2
Ũ
),

�2 = [(⇡2 + ⇡3)�2
2 ]/(⇡2�2

Ṽ
), �3 = (⇡1�2

2)/(⇡2�2
Ṽ
) and

�4 = (⇡3�2
2)/(⇡2�2

Ũ
) are the regularization parameters.

Based on Equations (11) to (14), the key characteristics of
MPMA are summarized as follows:

• The terms in Equation (11) are the same as the optimiza-
tion objective of standard SVD method, which ensure
that the learned Ũ and Ṽ can accurately estimate the
overall structure and avoid overfitting in user/item fea-
ture vectors.

• The terms in Equation (12) and Equation (13) can help
learn local latent factors based on the global latent fac-
tors Ũ and Ṽ , and parameters ↵s and �t can be em-
ployed to control the contribution of individual user/item
clusters. Meanwhile, the global latent factors will be up-
dated during the optimization of local latent factors, so
that the global latent factors of MPMA will be different
from those in standard SVD method.

• The standard SVD method can be viewed as a special
case of MPMA by setting all ↵s = �t = 0. More specif-
ically, we refer to the model with only local user features
as u-MPMA, the model with only local item features as
i-MPMA, and the one with both of them as MPMA. Em-
pirical study shows both u-MPMA and i-MPMA can im-
prove recommendation accuracy and MPMA achieves
better improvement of recommendation accuracy than
u-MPMA and i-MPMA.

3.2 Optimization Algorithm

After defining the optimization objective, we present how to
solve the optimization problem in this section. As shown by
Srebro et al. [2003], the problem defined in Equations (11)
to (14) is a difficult non-convex optimization problem, be-
cause the introduced weights lead to significant changes in
the critical point structure. To tackle this problem, we develop
a stochastic gradient descent (SGD) based method.

In SGD, we first compute the partial derivatives of param-
eters, and then iteratively update the parameters until conver-
gence. The partial derivatives of the loss function with respect

to global features Ũ and Ṽ can be computed as follows:

@L
@Ũ (s)

= �1Ũ
(s) + I(s)U ⌦ (Ũ (s)Ṽ �R(s)

U )Ṽ 0

+ ↵sI
(s)
U ⌦ (Ũ (s)V (s) �R(s)

U )[V (s)]0 (15)
@L

@Ṽ (t)
= �2Ṽ

(t) + I(t)V ⌦ (Ũ Ṽ (t) �R(t)
V )0Ũ

+ �tI
(t)
V ⌦ (U (t)Ṽ (t) �R(t)

V )0U (t) (16)

The partial derivatives of local feature vectors U (t) and V (s)

are given by

@L
@U (t)

= �3U
(t) + �tI

(t)
V ⌦ (U (t)Ṽ (t) �R(t)

V )[Ṽ (t)]0(17)

@L
@V (s)

= �4V
(s) + ↵sI

(s)
U ⌦ (Ũ (s)V (s) �R(s)

U )0Ũ (s)(18)

Compared with standard matrix approximation based
methods, the proposed method requires more computation
time due to the extra local features. However, we can see
that the parameter update stream consists of two processing
stages: S1) updating global feature vectors and S2) updating
local feature vectors. If the S1 stage is performed on a sub-
matrix which has no overlapping rows and columns with the
submatrix that S2 stage is performed, then we can construct a
pipeline to perform S1 and S2 in parallel.

The detailed pipeline-based learning method is presented
in Algorithm 1. In line 7 and 8, S1 and S2 can run in par-
allel, so that the overall training time of MPMA can be
reduced. Note that following the training data scheduling
method in [Recht and Ré, 2013], we can set up more com-
puting threads in Algorithm 1 to further improve the training
efficiency.

Algorithm 1 Efficient Pipeline-based Learning Algorithm

Input: Rating matrices R for all users and items, R(s)
U (s 2

[1, g]) for each user group, and R(t)
V (t 2 [1, f ]) for

each item group. ↵s,�t,� are parameters in the mixture
model, and r is the rank for MA.

Output: (Ũ , Ṽ , U (1), . . . , U (g), V (1), . . . , V (f))
1: //building model
2: Randomly initialize Ũ 2 Rm⇥r, U (s) 2 Rm⇥r(s 2

[1, g]), Ṽ 2 Rr⇥n and V (t) 2 Rr⇥n(t 2 [1, f ]);
3: while not converged do
4: Choose i 6= i0 2 [1, g] and j 6= j0 2 [1, f ];
5: R(i,j) = R(i)

U \R(j)
V , R(i0,j0) = R(i0)

U \R(j0)
V ;

6: //Update in parallel:
7: S1: update Ũ and Ṽ w.r.t. R(i0,j0) by Eq. (15)(16);
8: S2: update U (i) and V (j) w.r.t. R(i,j) by Eq. (17)(18);
9: end while

3.3 Rating Prediction
In MPMA, each user-item rating is characterized by a mixture
model, so that we can estimate the “weight” of each compo-
nent in the mixture model — ⇡k and then apply the mixture
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components to predict user-item ratings. The hidden param-
eters ⇡k (k 2 [1, 3]) can be obtained with the EM method as
follows:

E-step:

�(Zk
ij) =

⇡kN (Rij |Fk,�
2
k)

P

k02[1,3] ⇡k0N (Rij |Fk0 ,�2
k)

(19)

F1 = {Ũi·, V·j}, F2 = {Ũi·, Ṽ·j}, F3 = {Ui·, Ṽ·j} (20)

M-step:

�2
k =

1
Nk

X

ij

�(Zk
ij)(Rij �R(k)

ij )2,⇡k =
Nk

N
(21)

Nk =
X

ij

�(Zk
ij), N =

X

k

Nk, (22)

R(1)
ij = Ũi·V

(s)
·j , R(2)

ij = Ũi·Ṽ·j , R
(3)
ij = U (t)

i· Ṽ·j (23)

where Fk denotes the user and item features for the k-th com-
ponent in the mixture model. After obtaining ⇡k, we can use
the mean of mixture model to estimate the missing rating of
user i on item j as follows:

R̂ij = ⇡1Ũi·V
(s)
·j + ⇡2Ũi·Ṽ·j + ⇡3U

(t)
i· Ṽ·j (24)

where user i (item j) belongs to the t-th user group (s-th item
group).

4 Experimental Results
This section evaluates the proposed MPMA method on three
well-known datasets which have been widely used for evalu-
ating recommendation algorithms – 1) MovieLens 1M (⇠106

ratings of 6, 040 users on 3, 706 items), 2) MovieLens 10M
(⇠107 ratings of 69, 878 users on 10, 677 items), and 3) Net-
flix (⇠108 ratings of 480, 189 users on 17, 770 items). The
root mean square error (RMSE) is adopted as the evaluation
metric for recommendation accuracy, which can be computed
as

q
1
|T |

P
(u,i)2T (R̂ui � Rui)2, where T denotes the set of

ratings in test data and |T | is the number of ratings in test
data.

4.1 Sensitivity Analysis
In this study, we evaluate how the recommendation accuracy
of MPMA varies with different parameter settings on Movie-
Lens (1M) and MovieLens (10M) datasets, i.e., the number
of clusters and rank.

Accuracy vs. Clustering methods
Figure 3 analyzes the impact of different clustering meth-
ods with different numbers of row and column clusters f
and g on MovieLens (1M) and MovieLens (10M) respec-
tively, where we use three commonly-used and typical clus-
tering method: K-means++(KmP) method [Arthur and Vas-
silvitskii, 2007], Balanced clustering(BaC) method [Baner-
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jee and Ghosh, 2002], and Bregman Co-clustering(BrC)
method [Banerjee et al., 2007]. Note that, MPMA method is
orthogonal to clustering algorithms, so other clustering meth-
ods can also be adopted in MPMA. In Figure 3, the cases of
1⇥ 2 and 2⇥ 1 clusterings are not considered, because those
two cases are i-MPMA and u-MPMA, respectively, and the
results will be presented in Figure 4.

We can see from the results that MPMA with BaC method
can outperform MPMA with both KmP and BrC methods in
recommendation accuracy in all cases. This is because both of
KmP and BrC methods will often produce one or a few large
sparse clusters, which has been proved to be harder to provide
personal recommendations [Su and Khoshgoftaar, 2009]. In
addition, we can see that the accuracies of all methods de-
crease as f and g increase. This is due to the fact that each
co-cluster contains less user-item ratings as the number of
user/item clusters increases, resulting in insufficient data for
model training.

Accuracy vs. Latent factors
As shown in Figure 4, the proposed u-MPMA (with local user
features) and i-MPMA (with local item features) methods can
both outperform the classic RSVD method on all ranks. This
indicates that both local user features and local item features
can help improve the recommendation accuracy. Moreover,
the proposed MPMA method, which adopts both local user
features and local item features, outperforms all other three
methods (RSVD, u-MPMA, and i-MPMA) with all ranks.
This indicates that the benefits of local user features and local
item features are orthogonal, and thus should be both adopted
in collaborative filtering.

Accuracy vs. Rank
Figure 4 also studies the effect of local user/item features with
rank r ranging in [10, 100] on both the MovieLens (1M) and
MovieLens (10M) datasets. As shown in the results, higher
ranks will lead to better accuracy when r increases from 10
to 100, and the results get stable when r is larger than 50. But
the recommendation accuracy of RSVD decreases slightly as
r increases, which means large ranks will cause overfitting
on RSVD. But in the proposed method, overfitting is not ob-
served even when rank r is as large as 100, which indicates
that the introduced local features can increase robustness of
the proposed method.

Efficiency vs. Rank
Figure 5 compares the computation efficiency of RSVD
method and MPMA method with different ranks. We can
see from the results that MPMA achieves comparable effi-
ciency with RSVD with the help of the pipeline-based learn-
ing framework (Algorithm 1), although MPMA has to learn
many more local features. Note that, more pipelines can be
set to further enhance efficiency by dividing more user/item
groups. This demonstrates that MPMA can achieve good
scalability on large datasets.

4.2 Performance Comparison
In this study, we compare the recommendation accuracy of
the proposed method against five state-of-the-art matrix ap-
proximation based CF methods: NMF [Lee and Seung, 2001],
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Figure 5: Efficiency comparison of RSVD and MPMA with
different ranks r on the MovieLens (10M) dataset.

Table 1: RMSEs of the proposed MPMA method and the
other five state-of-the-art methods — NMF [Lee and Seung,
2001], RSVD [Paterek, 2007], BPMF [Salakhutdinov and
Mnih, 2008], APG [Toh and Yun, 2010], GSMF [Yuan et al.,
2014].

MovieLens (10M) Netflix
NMF 0.8832 ± 0.0007 0.9396 ± 0.0002
RSVD 0.8271 ± 0.0009 0.8534 ± 0.0001
BPMF 0.8195 ± 0.0006 0.8420 ± 0.0003
APG 0.8098 ± 0.0005 0.8476 ± 0.0028

GSMF 0.8012 ± 0.0011 0.8420 ± 0.0006
MPMA 0.7712 ± 0.0002 0.8139 ± 0.0003

RSVD [Paterek, 2007], BPMF [Salakhutdinov and Mnih,
2008], APG [Toh and Yun, 2010] and GSMF [Yuan et al.,
2014]. We emphasize the comparison between MPMA and
GSMF, because GSMF is the latest work related to the pro-
posed MPMA method and empirically proves to be better
than CMF [Singh and Gordon, 2008].

In the following experiments, all results are presented by
averaging the results over five different random train/test
splits with the ratio of 9:1. For the proposed method, we set
rank r = 100 and f ⇥g as 2⇥2, learning rate v = 0.001. For
the parameters from Equation 11 to 14, we set all ↵ and � val-
ues to 1 due to the hardness of estimating all � values, and set
all � values to 0.06 for L2-regularization. Optimal parameters
of the compared methods are chosen from their papers.

As we can see from Table 1, MPMA significantly outper-
forms all the other five matrix approximation based CF meth-
ods on both datasets. Compared with NMP, RSVD, BPMF,
APG and GSMF, the main reasons that the proposed MPMA
method can make more accurate recommendations are 1) lo-
cal latent factors are adopted by MPMA to better understand
user interests and 2) a mixture model is adopted to combine
both local predictions and global predictions to achieve more
accurate predictions.

5 Conclusion
Existing matrix approximation based collaborative filtering
methods rely on either global latent factors or local latent fac-
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tors of users and items, and cannot provide optimal user/item
modelling and the most accurate recommendations. In this
paper, a mixture probabilistic matrix approximation (MPMA)
method is proposed, which unifies global latent factors and
local latent factors of users and items by a Gaussian mix-
ture model to improve recommendation accuracy. Experi-
mental study on real-world datasets demonstrates that the
proposed MPMA method can outperform five state-of-the-
art MA-based collaborative filtering methods in recommen-
dation accuracy. Furthermore, the proposed MPMA method
can be trained by a pipeline-based method, so that it is scal-
able on large datasets.
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